Search results for "Spontaneous Symmetry Breaking"

showing 10 items of 73 documents

Formation of a novel ferromagnetic end-to-end cyanate bridged homochiral helical copper(ii) Schiff base complex via spontaneous symmetry breaking

2014

A homochiral helical coordination polymer of copper(II) has been synthesized using achiral precursors via spontaneous symmetry breaking and has been confirmed by single crystal X-ray diffraction and solid-state CD spectroscopy. The variable temperature magnetic measurements indicate the presence of weak ferromagnetic exchange interactions mediated by end-to-end cyanate bridges (J = +0.12 cm(-1)).

Circular dichroismSchiff baseStereochemistryChemistryCoordination polymerSpontaneous symmetry breakingchemistry.chemical_elementcircular dichroism spectroscopyCyanateferromagnetismsingle crystalsCopperX-ray diffractionInorganic ChemistryCrystallographychemistry.chemical_compoundfunctional groupsFerromagnetismcopperferromagnetic materialsta116Single crystalDalton Transactions
researchProduct

Chiral symmetry breaking condensates from baryonic sum rules

1984

We analyse baryonic sum rules in order to determine chiral symmetry breaking condensates. We especially investigate the influence of the choice of the interpolating field and of the factorization hypothesis for the four quark condensate. Our results are consistent with those obtained from pseudoscalar sum rules and PCAC.

Condensed Matter::Quantum GasesChiral anomalyQuarkPhysicsParticle physicsPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeSpontaneous symmetry breakingNuclear TheoryHigh Energy Physics::PhenomenologyPseudoscalarExplicit symmetry breakingNambu–Jona-Lasinio modelSymmetry breakingChiral symmetry breakingEngineering (miscellaneous)Zeitschrift für Physik C Particles and Fields
researchProduct

Tevatron Run II combination of the effective leptonic electroweak mixing angle

2018

The Ministry of Science and Innovation and the Consolider-Ingenio 2010 Program and the European Union community Marie Curie Fellowship Contract No. 302103.

Drell-Yan processsemianalytical programsPhysics and Astronomy (miscellaneous)FERMION PAIR PRODUCTIONUPGRADETevatronhadron-colliders01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & Fieldselectron: pair productionHigh Energy Physics - Experiment (hep-ex)MONTE-CARLOUNIVERSAL MONTE-CARLOELECTROMAGNETIC CALORIMETERDZERO[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSangular distributionBatavia TEVATRON CollMonte CarloPhysicsscattering [anti-p p]gauge bosonPhysicsElectroweak interactionDrell–Yan processWeinberg anglespontaneous symmetry breaking [electroweak interaction]muon: pair productionPhysical Sciencesmixing angle [electroweak interaction]bosonPHOTOSmass: measured [W]asymmetryParticle physicsFOS: Physical sciencesSEMIANALYTICAL PROGRAMddc:500.2Astronomy & Astrophysicselectroweak interaction: spontaneous symmetry breaking114 Physical sciences530programmingW: mass: measuredStandard Modelanti-p p: colliding beams[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hadroproduction [Z0]0103 physical sciencesanti-p p: scatteringddc:530High Energy Physicspair production [electron]pair production [muon]CALORIMETER010306 general physicsQED RADIATIVE-CORRECTIONSQed radiative-corrections; fermion pair production; universal; Monte Carlo; parton distributions; hadron-colliders; electromagnetic; calorimeter;semianalytical programs; E(+)E(-) annihilation; boson; production; D0 detectorGauge bosonBOSON PRODUCTIONMuonScience & Technologyelectroweak interaction: mixing angleAnti-p p: scattering | anti-p p: colliding beams | Z0: hadroproduction | Z0: leptonic decay | electroweak interaction: spontaneous symmetry breaking | electroweak interaction: mixing angle | muon: pair production | W: mass: measured | Weinberg angle | Batavia TEVATRON Coll | angular distribution | electron: pair production | Drell-Yan process | gauge boson | programming | asymmetry | CDF | DZERO | experimental resultsIDENTIFICATION010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyuniversalWeinberg angleZ0: hadroproductionQED RADIATIVE-CORRECTIONS; FERMION PAIR PRODUCTION; UNIVERSAL; MONTE-CARLO; PARTON DISTRIBUTIONS; HADRON COLLIDERS; ELECTROMAGNETIC; CALORIMETER; SEMIANALYTICAL PROGRAM; E(+)E(-) ANNIHILATION; BOSON; PRODUCTION; D0 DETECTORleptonic decay [Z0]E(+)E(-) ANNIHILATIONelectromagneticPARTON DISTRIBUTIONSExperimental High Energy PhysicsZ0: leptonic decayD0 DETECTORCDFHigh Energy Physics::Experimentproductioncolliding beams [anti-p p]Leptonexperimental results
researchProduct

G-Spaces and Kaluza-Klein Theory

1988

G-spaces are present whenever symmetries are relevant in physics. After a short introduction to this subject, spontaneous symmetry breaking in elementary particle physics is considered from this point of view. Kaluza-Klein theory is discussed in a purely geometrical formulation. Some results in connection with the geometrical compactification scheme are presented.

Explicit symmetry breakingTheoretical physicsCompactification (physics)Stability groupSpontaneous symmetry breakingMathematical analysisHomogeneous spaceKaluza–Klein theoryVector bundlePrincipal bundleMathematics
researchProduct

Mixing-induced spontaneous supersymmetry breaking

2010

It is conjectured that flavor mixing furnishes a universal mechanism for the spontaneous breaking of supersymmetry. The conjecture is proved explicitly for the mixing of two Wess--Zumino $\mathcal{N}=1$ supermultiplets and arguments for its general validity are given. The mechanism relies on the fact that, despite mixing treats fermions and bosons symmetrically, both the fermionic and the bosonic zero point energies are shifted by a positive amount and this kind of shift does not respect supersymmetry.

High Energy Physics - TheoryCondensed Matter::Quantum GasesPhysicsHigh Energy Physics::LatticeSpontaneous symmetry breakingHigh Energy Physics::PhenomenologyFOS: Physical sciencesGeneral Physics and AstronomySupersymmetrySupersymmetry breakingHigh Energy Physics - PhenomenologyHigh Energy Physics::TheoryExplicit symmetry breakingTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Quantum mechanicsSymmetry breakingQuantum field theoryChiral symmetry breakingMixing (physics)Physics Letters A
researchProduct

Derivation of spontaneously broken gauge symmetry from the consistency of effective field theory II: Scalar field self-interactions and the electroma…

2019

We extend our study of deriving the local gauge invariance with spontaneous symmetry breaking in the context of an effective field theory by considering self-interactions of the scalar field and inclusion of the electromagnetic interaction. By analyzing renormalizability and the scale separation conditions of three-, four- and five-point vertex functions of the scalar field, we fix the two couplings of the scalar field self-interactions of the leading order Lagrangian. Next we add the electromagnetic interaction and derive conditions relating the magnetic moment of the charged vector boson to its charge and the masses of the charged and neutral massive vector bosons to each other and the tw…

High Energy Physics - TheoryNuclear and High Energy PhysicsNuclear TheorySpontaneous symmetry breakingFOS: Physical sciences01 natural sciencesStandard ModelVector bosonNuclear Theory (nucl-th)Theoretical physicsHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryddc:530Gauge theory010306 general physicsGauge symmetryPhysics010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics - Lattice (hep-lat)lcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Scalar fieldlcsh:Physics
researchProduct

Derivation of spontaneously broken gauge symmetry from the consistency of effective field theory I: Massive vector bosons coupled to a scalar field

2018

We revisit the problem of deriving local gauge invariance with spontaneous symmetry breaking in the context of an effective field theory. Previous derivations were based on the condition of tree-order unitarity. However, the modern point of view considers the Standard Model as the leading order approximation to an effective field theory. As tree-order unitarity is in any case violated by higher-order terms in an effective field theory, it is instructive to investigate a formalism which can be also applied to analyze higher-order interactions. In the current work we consider an effective field theory of massive vector bosons interacting with a massive scalar field. We impose the conditions o…

High Energy Physics - TheoryNuclear and High Energy PhysicsNuclear TheorySpontaneous symmetry breakingFOS: Physical sciences53001 natural sciencesRenormalizationNuclear Theory (nucl-th)Theoretical physicsHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryddc:530Gauge theory010306 general physicsGauge symmetryPhysicsCoupling constantUnitarity010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)lcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Scalar fieldlcsh:Physics
researchProduct

Gravitational footprints of massive neutrinos and lepton number breaking

2020

We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both "high-scale" as well as "low-scale" variants, with either explicit or spontaneously broken lepton number symmetry $U(1)_L$ in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken $U(1)_L$ and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detectability of GWs in present or near future measurements.…

High Energy Physics - TheoryNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Spontaneous symmetry breakingDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Computer Science::Digital Libraries01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometry0103 physical sciences010306 general physicsPhysics010308 nuclear & particles physicsMass generationHigh Energy Physics::PhenomenologyLepton numberlcsh:QC1-999High Energy Physics - PhenomenologySeesaw mechanismHigh Energy Physics - Theory (hep-th)Higgs bosonNeutrinolcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Pinch Technique: Theory and Applications

2009

We review the theoretical foundations and the most important physical applications of the Pinch Technique (PT). This general method allows the construction of off-shell Green’s functions in non-Abelian gauge theories that are independent of the gauge-fixing parameter and satisfy ghost-free Ward identities. We first present the diagrammatic formulation of the technique in QCD, deriving, at one loop, the gauge independent gluon self-energy, quark–gluon vertex, and three-gluon vertex, together with their Abelian Ward identities. The generalization of the PT to theories with spontaneous symmetry breaking is carried out in detail, and the profound connection with the optical theorem and the disp…

High Energy Physics - TheoryParticle physicsSpontaneous symmetry breakingGluonsHigh Energy Physics::LatticeFOS: Physical sciencesGeneral Physics and AstronomyDynamical mass generationGauge-invarianceSchwinger–Dyson equationsRenormalizationTheoretical physicsQuantization (physics)symbols.namesakeHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)Non-Abelian gauge theoriesFeynman diagramGauge theoryGauge bosonsQuantum chromodynamicsPhysicsBackground field methodGreens functionsElectroweak interactionHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)symbols
researchProduct

Orientifold theory dynamics and symmetry breaking

2004

We show that it is possible to construct explicit models of electroweak symmetry breaking in which the number of techniflavors needed to enter the conformal phase of the theory is small and weakly dependent on the number of technicolors. Surprisingly, the minimal model with {\it just} two (techni)flavors, together with a suitable gauge dynamics, can be made almost conformal. The theories we consider are generalizations of orientifold type gauge theories, in which the fermions are in either two index symmetric or antisymmetric representation of the gauge group, as the underlying dynamics responsible for the spontaneous breaking of the electroweak symmetry. We first study their phase diagram,…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsParticle physicsSpontaneous symmetry breakingHigh Energy Physics::LatticeElectroweak interactionLattice field theoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesTechnicolorSupersymmetryYang–Mills theoryHigh Energy Physics - PhenomenologyExplicit symmetry breakingTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Symmetry breaking
researchProduct